सफलता की शुरुआत सिर्फ मोशन के साथ...

CBSE 10th Board

Term 1-2021

PAPER WITH SOLUTION

MATHS

मोशन के परिणाम ही है, सफलता का प्रमाण

JEE MAIN 2021 RESULT

Students Qualified for JEE ADVANCED 2994/4087 = 73.25\%

JEE ADVANCED 2021 RESULT

24 Student Under 500

41 Student Under 1000

Motion's Selection 1256/2994 $=\mathbf{4 1 . 9 5 \%}$

NEET 2020 RESULT

ANSWER KEY

Paper Code_030/1/4 (JSK/1)

1. B
2. C
3. A
4. A
5. A
6. B
7. A
8. C
9. A
10. C
11. B
12. D
13. A
14. C
15. D
16. A
17. B
18. B
19. D
20. B
21. A
22. B
23. A
24. C
25. B
26. C
27. B
28. C
29. C
30. D
31. A
32. A
33. C
34. D
35. C
36. D
37. C
38. B
39. A
40. C
41. D
42. D
43. C
44. C
45. D
46. D
47. A
48. B
49. B
50. B

Paper Code_030/2/4 (JSK/2)

1. B
2. D
3. C
4. A
5. D
6. B
7. D
8. C
9. D
10. A
11. D
12. C
13. B
14. C
15. D
16. A
17. D
18. D
19. C
20. B
21. A
22. A
23. B
24. A
25. B
26. C
27. B
28. A
29. B
30. D
31. C
32. B
33. A
34. B
35. C
36. C
37. D
38. B
39. D
40. D
41. D
42. C
43. C
44. A
45. C
46. B
47. D
48. C
49. C
50. B

Paper Code_430/1/4

1. C
2. C
3. B
4. A
5. C
6. B
7. D
8. C
9. B
10. B
11. A
12. C
13. A
14. D
15. C
16. A
17. B
18. A
19. C
20. C
21. B
22. D
23. B
24. C
25. C
26. D
27. D
28. B
29. B
30. B
31. D
32. C
33. B
34. C
35. D
36. A
37. C
38. C
39. D
40. D
41. A
42. B
43. D
44. C
45. A
46. Bonus
47. B
48. B
49. C
50. A

Paper Code_430/2/4

1. A
2. B
3. C
4. C
5. D
6. D
7. D
8. D
9. C
10. D
11. B
12. C
13. B
14. C
15. B
16. B
17. B
18. B
19. B
20. A
21. B
22. B
23. D
24. B
25. B
26. C
27. C
28. A
29. C
30. C
31. D
32. D
33. A
34. C
35. C
36. A
37. A
38. D
39. B
40. C
41. A
42. D
43. B
44. A
45. A
46. A
47. C
48. B
49. B
50. D

PAPER AND SOLUTION

Paper Code_030/2/4 (JSK/2)

SECTION A

Q.No. 1 to 20 are of 1 mark each. Attempt any 16 from Q. 1 to 20

1. The exponent of 5 in the prime factorization of 3750 is
(A) 3
(B) 4
(C) 5
(D) 6

Sol. (B)
$3750=125 \times 3 \times 5 \times 2=5^{3} \times 5^{1} \times 2 \times 3=5^{4} \times 2 \times 3$
2. The graph of a polynomial $P(x)$ cuts the x-axis at 3 points and touches it at 2 other points. The number of zeroes of $P(x)$ is
(A) 1
(B) 2
(C) 3
(D) 5

Sol. (D)
$P(x)$ cuts real axis (x-axis) at 3 different points and touches at 2 points so total 5 zeroes
3. The values of x and y satisfying the two equations $32 x+33 y=34,33 x+32 y=31$ respectively are:
(A) $-1,2$
(B) $-1,4$
(C) $1,-2$
(D) $-1,-4$

Sol. (A)
$32 x+33 y=34, \quad 33 x+32 y=31$
adding both equations
$65 x+65 y=65$
$x+y=1$
$x=1-y$ Put this in equations (1) \& (2)
$32(1-y)+33 y=34$
$32-32 y+33 y=34$
$y=34-32$
$y=2$
$x=1-2$
$x=-1$
4. If $A(3, \sqrt{3}), B(0,0)$ and $C(3, k)$ are the three vertices of an equilateral triangles $A B C$, then the value of k is
(A) 2
(B) -3
(C) $-\sqrt{3}$
(D) $-\sqrt{2}$

Sol. (C)
Using distance formula
$A C=\sqrt{(3-3)^{2}+(k-\sqrt{3})^{2}}$
$A C^{2}=k^{2}+3-2 \sqrt{3} k$
$B C=\sqrt{(3-0)^{2}+(k-0)^{2}}$
$B C^{2}=9+k^{2}$

In equilateral $\triangle A B=B C=C A$
$A C^{2}=B C^{2}$
$k^{2}+3-2 \sqrt{3} k=9+k^{2}$
$3-9=2 \sqrt{3} k$
$-6=2 \sqrt{3} k$
$k=\frac{-6}{2 \sqrt{3}}=\frac{-2 \times \sqrt{3} \times \sqrt{3}}{2 \sqrt{3}}$
$k=-\sqrt{3}$
5. In figure $D E \| B C, A D=2 \mathrm{~cm}$ and $B D=3 \mathrm{~cm}$, then $\operatorname{ar}(\triangle A B C)$: ar ($\triangle A D E)$ is equal to

(A) $4: 25$
(B) $2: 3$
(C) $9: 4$
(D) $25: 4$

Sol. (D)
Here DC || $B C$ so
In \triangle ADE AND $\triangle \mathrm{ABC}$
$\angle \mathrm{ADE}=\angle \mathrm{ABC} \quad$ (corresponding angle)
$\angle A E D=\angle A C B \quad(---\cdots---)$
So, $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
Now, $=\frac{\text { Areaof } \triangle \mathrm{ABC}}{\text { Areaof } \triangle \mathrm{ADE}}=\left(\frac{\mathrm{AB}}{\mathrm{AD}}\right)^{2}=\left(\frac{5}{2}\right)^{2}=\frac{25}{4}$

6. If $\cot \theta=\frac{1}{\sqrt{3}}$, the value of $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta$ is
(A) 1
(B) $\frac{40}{9}$
(C) $\frac{38}{9}$
(D) $5 \frac{1}{3}$

Sol. (D)
$\operatorname{Cot} \theta=\frac{1}{\sqrt{3}}, \quad \theta=60^{\circ}$
$\left(\sec 60^{\circ}\right)^{2}+\left(\operatorname{cosec} 60^{\circ}\right)^{2}$
$(2)^{2}+\left(\frac{2}{\sqrt{3}}\right)^{2}=4+\frac{4}{3}=5 \frac{1}{3}$
7. The area of a quadrant of a circle where the circumference of circle is 176 m , is
(A) $2464 \mathrm{~m}^{2}$
(B) $1232 \mathrm{~m}^{2}$
(C) $616 \mathrm{~m}^{2}$
(D) $308 \mathrm{~m}^{2}$

Sol. (C)
$2 \pi r=176$

$r=\frac{176 \times 7}{2 \times 22}$
$r=28 \mathrm{~m}$
Area pf quadrant $=\frac{\pi r^{2}}{4}=\frac{22}{7} \times \frac{28 \times 28}{4}=616 \mathrm{~m}^{2}$
8. For an event $E, P(E)+(\bar{E})=x$, then the value of $x^{3}-3$ is
(A) -2
(B) 2
(C) 1
(D) -1

Sol. (A)
We know that
$P(E)+P(E)=1$
So $\quad x=1$
$x^{3}-3=(1)^{3}-3=1-3=-2$
9. What is the greatest possible speed at which a girl can walk 95 m and 171 m in an exact number of minutes?
(A) $17 \mathrm{~m} / \mathrm{min}$
(B) $19 \mathrm{~m} / \mathrm{min}$
(C) $23 \mathrm{~m} / \mathrm{min}$
(D) $13 \mathrm{~m} / \mathrm{min}$

Sol. (B)
H.C.F. of 95 and 171 is 19
10. In figure, the graph of a polynomial $P(x)$ is shown. The number of zeroes of $P(x)$ is:

(A) 1
(B) 2
(C) 3
(D) 4

Sol. (C)
Here graph cuts x-axis at 3 different point so it has 3 zeroes.
11. Two lines are given to be parallel. The equation of one of the lines is $3 x-2 y=5$. The equation of the second line can be
(A) $9 x+8 y=7$
(B) $-12 x-8 y=7$
(C) $-12+8 y=7$
(D) $12 x+8 y=7$

Sol. (C)

We know that if pair of lines are parallel to each other then -
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
first equation
$3 x-2 y-5=0$
$a_{1}=3, b_{1}=-2, c_{1}=-5$
by the option (c)
$-12 x+8 y-7=0$
$a_{1}=-12, b_{2}=8, c_{2}=-7$
$\frac{3}{-12}=\frac{-2}{8} \neq \frac{-5}{-7}$
$\frac{1}{-4}=-\frac{1}{4} \neq \frac{5}{7}$
12. Three vaertices of a parallelogram $A B C D$ are $A(1,4) . B(-2,3)$ and $C(5,8)$. The ordinate of the fourth vertex D is
(A) 8
(B) 9
(C) 7
(D) 6

Sol. (B)
Diagonal of parallelogram bisect each other so O is a mid-point.
When we take $A C, O$ is mid-point so coordinate of O is.

$$
\begin{array}{r}
C(x, y) x=\frac{x_{1}+x_{2}}{2}=\frac{1+5}{2}=\frac{6}{2}=3 \\
y=\frac{y_{1}+y_{2}}{2}=\frac{4+8}{2}=\frac{12}{2}=6
\end{array}
$$

Now we will use this coordinate for line BD's mid-point
$x=\frac{-2+x}{2}$
$y=\frac{3+4}{2}$
$3=\frac{-2+x}{2}$
$6=\frac{3+4}{2}$
$6=-2+x$
$8=x$
$12-3=4$
$9=4$
13. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \angle \mathrm{F}=\angle \mathrm{C}, \angle \mathrm{B}=\angle \mathrm{E}$ and $\mathrm{AB}=\frac{1}{2} \mathrm{DE}$. Then, the two triangles are
(A) Congruent, but not similar.
(B) Similar, but not congruent.
(C) Neither congruent nor similar
(D) Congruent as well as similar.

Sol. (B)
Here, $\angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F}$

by the AA criteria
both $\triangle A B C \sim \Delta$ DEF
but side are now equal
as given $A B=\frac{1}{2} D E$
So they are not congruent.
14. In $\triangle A B C$ right angled at $B \cdot \sin A=\frac{7}{25}$. then the value of $\cos C$ is
(A) $\frac{7}{25}$
(B) $\frac{24}{25}$
(C) $\frac{7}{24}$
(D) $\frac{24}{7}$

Sol. (A)
$\sin A=\frac{7}{25}=\frac{P}{H}$

$\mathrm{B}^{2}=\mathrm{H}^{2}-\mathrm{P}^{2}$
$=(25)^{2}-(7)^{2}$
$=625-49$
$B^{2}=576$
$B=24$
$\cos C=\frac{B}{H}=\frac{7}{25}$
15. The minute hand of a clock is 84 cm long. The distance covered by the tip of minute hand from 10:10 am to 10:25 am is
(A) 44 cm
(B) 88 cm
(C) 132 cm
(D) 176 cm

Sol. (C)
We know that

Minute Hand makes
angle in 1 minute $=60$
So in 15 minute $=60 \times 15=90^{\circ}$
Distance covered $=2 \pi r \times \frac{\theta}{360}$

$=2 \times \frac{22}{7} \times 84 \times \frac{90}{360}=132 \mathrm{~cm}$
16. The probability that the drawn card from a pack of 52 cards is neither an ace nor a spade is
(A) $\frac{9}{13}$
(B) $\frac{35}{52}$
(C) $\frac{10}{13}$
(D) $\frac{19}{26}$

Sol. (A)
Total cards $=52$
Total Ace $=4$
Total spade $=13$ (one Ace of spade included) $=13-1=12$
Favorable o/c = $52-(12+4)=52-16=36$
$P(E)=\frac{36}{52}=\frac{9}{13}$.
17. Three alarm clocks ring their alarms at regualr intervals of $20 \mathrm{~min}, 25 \mathrm{~min}$ and 30 min respectively. If they first beep together at 12 noon, at what time will they again for the first time?
(A) 4: 00 pm
(B) $4: 30 \mathrm{pm}$
(C) $5: 00 \mathrm{pm}$
(D) 5: 30 pm

Sol. (C)
$20 \mathrm{~min}, 25 \mathrm{~min}, 30 \mathrm{~min}$
L.C.M. of $20,25,30 \Rightarrow$
L.C.M. $=2 \times 2 \times 3 \times 5 \times 5=300 \mathrm{~min}$
\Rightarrow In $1 \mathrm{hr} . \Rightarrow 60 \mathrm{~min}$.
or
$60 \mathrm{~min} . \Rightarrow 1 \mathrm{hr}$.
$1 \mathrm{~min} .=\frac{1}{60} \mathrm{hr}$.

2	20,	25,	30
2	10,	25,	15
3	5,	25,	15
5	5,	25,	5
5	1,	5,	1
	1,	1,	1

$360 \min =\frac{1}{60} \times 300=5 \mathrm{hr}$.
first 12 noon and they will ring at 5:00 pm
18. A quadratic polynomial, the product and sum of whose zeroes are 5 and 8 respectively is
(A) $k\left[x^{2}-8 x+5\right]$
(B) $k\left[x^{2}-8 x+5\right]$
(C) $k\left[x^{2}-5 x+8\right]$
(D) $k\left[x^{2}-5 x+8\right]$

Sol. (A)
$\alpha \beta=5, \quad \alpha+\beta=8$
we know that our equation is
$\mathrm{k}\left\{\mathrm{x}^{2}-\right.$ (sum of zeroes) $\mathrm{x}+$ product of zeroes $\}$
$k\left\{x^{2}-(8) x+5\right\}$
19. Points $A(-1, y)$ and $B(5,7)$ lie on a circle with centre $O(2,-3 y)$. The value of y are
(A) $1,-7$
(B) $-1,7$
(C) 2,7
(D) $-2,-7$

Sol. (B)
$O A$ and $O B$ are radius of circle.
So

$$
\mathrm{OA}=\mathrm{OB}
$$

using distance formula
$\sqrt{(2+1)^{2}+(-3 y-y)^{2}}=\sqrt{(2-5)^{2}+(-3 y-7)^{2}}$
$9+9 y^{2}+y^{2}+6 y^{2}=9+9 y^{2}+49+42 y$
$7 y^{2}-42 y-49=0$
$y^{2}-6 y-7=0$
$y^{2}-7 y+y+7=0$
$y^{2}-6 y-7=0$
$y^{2}-7 y+y=0$
$y(y-7)+1(y-7)=0$
$(y+1)(y-7)=0$
$y=-1, y=7$
20. Given that $\sec \theta=\sqrt{2}$, the value of $\frac{1+\tan \theta}{\sin \theta}$ is
(A) $2 \sqrt{2}$
(B) $\sqrt{2}$
(C) $3 \sqrt{2}$
(D) 2

Sol. (A)
$\sec \theta=\sqrt{2}$
so $\theta=450$
now $\frac{1+\tan 45}{\sin 45}=\frac{1+1}{\frac{1}{\sqrt{2}}}=\frac{2}{\frac{1}{\sqrt{2}}}$
$=\frac{2}{1} \times \sqrt{2}=2 \sqrt{2}$

SECTION B

Q.No. 21 to 40 are of 1 mark each. Attempt any 16 from Q. 21 to 40
21. The greatest number which when divides 1251,9377 and 15628 leaves remainder 1,2 and 3 respectively is
(A) 575
(B) 450
(C) 750
(D) 625

Sol. (D)
H.C.F. of (1251-1), (9377-2), (15628-3)
H.C.F. of $(1250,9375,15625)$
$1250=625 \times 2$
$9375=625 \times 15$
$15625=625 \times 25$
H.C.F. $=625$
22. Which of the following cannot be the probability of an event?
(A) 0.01
(B) 3%
(C) $\frac{16}{17}$
(D) $\frac{17}{16}$

Sol. (D)
$\mathrm{O} \leq \mathrm{P}(\mathrm{E}) \leq 1$
So option (D) $\frac{17}{16}$ is not possible .
23. The diameter of a car wheel is 42 cm . the number of complete revolutions it will make in moving 132 km is
(A) 10^{4}
(B) 10^{5}
(C) 10^{6}
(D) 10^{3}

Sol. (B)
Total Distance $=132 \mathrm{~km}$
Diameter of Car Wheel $=42 \mathrm{~cm}$
Radius $=21 \mathrm{~cm}$
Circumference of car wheel $=2 \pi r=2 \times \frac{22}{7} \times 21=132 \mathrm{~cm}$
No. of Revolution $=\frac{\text { Distance }}{\text { Circumference }}=\frac{132 \times 1000 \times 100}{132}=10^{5}$
24. If θ is an acute angle and $\tan \theta+\operatorname{cat} \theta=2$, then the value of $\sin ^{3} \theta+\cos ^{3} \theta$ is
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{2}}{2}$
(D) $\sqrt{2}$

Sol. (C)
$\tan \theta+\cot \theta=2$
$\tan \theta+\frac{1}{\tan \theta}=2$
$\frac{\tan ^{2} \theta+1}{\tan \theta}=2$
$\tan ^{2} \theta+1=2 \tan \theta$
$\tan ^{2} \theta-2 \tan \theta+1=0$
$(\tan \theta-1)^{2}=0$
$\operatorname{Tan} \theta=1$
$\theta=45^{\circ}$
Value of $\sin ^{3} \theta+\cos ^{3} \theta$
Put $\theta=45^{\circ}$
$\left(\frac{1}{\sqrt{2}}\right)^{3}+\left(\frac{1}{\sqrt{2}}\right)^{3}$
$\frac{1}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}$
$\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$
$\frac{\sqrt{2}}{2}$
25. The ration in which the line $3 x+y-9=0$ divides the line segment joining the points $(1,3)$ and $(2,7)$ is
(A) $3: 2$
(B) $2: 3$
(C) $3: 4$
(D) $4: 3$

Sol. (C)

lit the line $3 x+y-9$ divides the point in $K: 1$ ratio
$\frac{2 K+1}{K+1}, \frac{7 K+3}{K+1}$ satisfy the $e 9^{n}$ of
Line $3 x+y-9=0$
$3\left(\frac{2 K+1}{K+1}\right)+\frac{7 K+3}{K+1}-9=0$
$6 K+3+7 K+3-9 K-9=0$
$4 \mathrm{~K}-3=0$
$4 \mathrm{~K}=3$
$K=\frac{3}{4}$
Required ration $=3: 4$
26. If $x-1$ is factor of the polynomial $p(x)=x^{3}+a x^{2}+2 b$ and $a+b=4$, then
(A) $a=5, b=-1$
(B) $a=9, b=-5$
(C) $a=7, b=-3$
(D) $a=3, b=1$

Sol. (B)
If $x-1$ is a factor of pdynomial
$P(x)=x^{3}+a x^{2}+2 b$
So $P(1)=0$
$(1)^{3}+a(1)^{2}+2 b=0$
$1+a+2 b=0$
$A+2 b=-1$
$a+b=4$ (given)
Put $a=u-b$
In eg ${ }^{\text {n (1) }}$
$u-b+2 b=-1$
$b=-5$ \& $\quad a=9$
27. If a and b are two coprime numbers, a^{3} and b^{3} are
(A) Coprime
(B) Not coprime
(C) Even
(D) Odd

Sol. (A)

If $a \& b$ are two Co-prime no's $a^{3} \& b^{3}$ are also co-prime
28. The area of a square that can be inscribed in a circle of area $\frac{1408}{7} \mathrm{~cm}^{2}$ is
(A) $321 \mathrm{~cm}^{2}$
(B) $642 \mathrm{~cm}^{2}$
(C) $128 \mathrm{~cm}^{2}$
(D) $256 \mathrm{~cm}^{2}$

Sol. (C)
area of circle $=\frac{1408}{7}$

$$
\begin{aligned}
& \pi r^{2}=\frac{1408}{7} \\
& \frac{22}{7} \times r^{2}=\frac{1408}{7} \\
& r^{2}=64 \\
& r=8 \mathrm{~cm}
\end{aligned}
$$

$B D$ is diameter of circle and also

Diagonal of square
$B D=16 \mathrm{~cm}$
Lit $B C=$ a cam
By Pythagoras theorem $a^{2}+a^{2}=16^{2}$

$$
\begin{aligned}
& 2 a^{2}=16^{2} \\
& a^{2}=\frac{256}{2}
\end{aligned}
$$

$$
a^{2}=128
$$

29. If $A(4,-2), B(7,-2)$ and $C(7,9)$ are the vertices of a $\triangle A B C$, then $\triangle A B C$ is
(A) Equilateral triangle
(B) Isosceles triangle
(C) Right angled triangle
(D) Isosceles right angled triangle

Sol. (C)

$A B=\sqrt{(7-4)^{2}+(-2+2)^{2}}=\sqrt{3^{2}}=3 \mathrm{~cm}$
$B C=\sqrt{(7-7)^{2}+(9+2)^{2}}=\sqrt{11^{2}}=11 \mathrm{~cm}$
$\mathrm{AC}=\sqrt{(7-4)^{2}+(9+2)^{2}}=\sqrt{3^{2}+11^{2}}=\sqrt{9+121}$

$$
=\sqrt{130}
$$

Here,

$$
\begin{aligned}
A B^{2}+B C^{2}=A C^{2} & \Rightarrow 3^{2}+11^{2}=(\sqrt{130})^{2} \\
& \Rightarrow 9+121=130 \\
& =130=130
\end{aligned}
$$

(C) Right angled triangle
30. If α, β are the zeros of the quadratic polynomial $p(x) x^{2}-(k+6) x+2(2 k-1)$
(A) -7
(B) 7
(C) -3
(D) 3

Sol. (B)
α, β are zeros of polynomial
$P(x)=x^{2}-(K+6) x+2(2 K-1)$
$\alpha+\beta=\frac{K+6}{1}$
$\alpha \beta=\frac{2(2 \mathrm{~K}-1)}{1}$
Value of $\alpha+\beta=\frac{1}{2} \alpha \beta$
$K+6=\frac{1}{2} \times 2(2 \mathrm{~K}-1)$
$K+6=2 K-1$
$K=7$
31. If n is a natural number, then $2\left(5^{n}+6^{n}\right)$ always ends with
(A) 1
(B) 4
(C) 3
(D) 2

Sol. (D)
$2\left(5^{n}+6^{n}\right)$
n is natural number
5^{n} is always end with 5
6^{n} is always end with 6
$2(5+6)$
2×11
$=22$
$2\left(5^{n}+6^{n}\right)$ always end with 2 .
32. The line segment joining the points $P(-3,2)$ and $Q(5,7)$ divided by the y-axis in the ratio
(A) $3: 1$
(B) $3: 4$
(C) $3: 2$
(D) $3: 5$

Sol. (D)

Let the required ratio $=\mathrm{K}: 1$
we know that on y -axis x -coordinate always zero
so,

$$
\begin{aligned}
\frac{5 K-3}{K+1} & =0 \\
5 K-3 & =0 \Rightarrow K=\frac{3}{5}
\end{aligned}
$$

Required ratio 3:5
33. If $a \cot \theta+b \operatorname{cosec} \theta=p$ and $b \cot \theta+a \operatorname{cosec} \theta=q$, then $p^{2}-q^{2}=$
(A) $a^{2}-b^{2}$
(B) $b^{2}-a^{2}$
(C) $a^{2}+b^{2}$
(D) $\mathrm{b}-\mathrm{a}$

Sol. (A)

$$
\begin{aligned}
& \mathrm{a} \cot \theta+\mathrm{b} \operatorname{cosec} \theta=\mathrm{p} \\
& b \cot \theta+a \operatorname{cosec} \theta=q \\
& \mathrm{p}^{2}=(\mathrm{a} \cot \theta+\mathrm{b} \operatorname{cosec} \theta)^{2} \\
& p^{2}=a^{2} \cot ^{2} \theta+b^{2} \operatorname{cosec}^{2} \theta+2 a b \cot \theta \operatorname{cosec} \theta \\
& q^{2}=b^{2} \cot ^{2} \theta+a^{2} \operatorname{cosec}^{2} \theta+2 a b \cot \theta \operatorname{cosec} \theta \\
& p^{2}-q^{2}=\left(a^{2}-b^{2}\right) \cot ^{2} \theta+\left(b^{2}-a^{2}\right) \operatorname{cosec}^{2} \theta \\
& =\left(a^{2}-b^{2}\right) \cot ^{2} \theta-\left(a^{2}-b^{2}\right) \operatorname{cosec}^{2} \theta \\
& =\left(a^{2}-b^{2}\right)\left[\cot ^{2} \theta-\operatorname{cosec}^{2} \theta\right] \\
& =a^{2}-b^{2} \quad\left[\because \cot ^{2} \theta-\operatorname{cosec}^{2} \theta=1\right]
\end{aligned}
$$

34. If the perimeter of a circle is half to that of a square, then the ratio of the area of the circle to the area of the square is
(A) $22: 7$
(B) $11: 7$
(C) $7: 11$
(D) $7: 22$

Sol. (D)
Perimeter of circle $=\frac{1}{2}$ perimeter of square
let radius of circle $=r$
and side of square $=a$
$2 \pi r=\frac{1}{2} \times 4 a$
$2 \pi r=2 a$
$a=\pi r$
$\frac{\text { are of circle }}{\text { area of square }}=\frac{\pi r^{2}}{\mathrm{a}^{2}}=\frac{\pi \mathrm{r}^{2}}{(\pi r)^{2}}$

$$
=\frac{\pi r^{2}}{\pi^{2} r^{2}}=\frac{1}{\pi}=\frac{7}{22}
$$

35. A dice is rolled twice. The probability that 5 will not come up either time is
(A) $\frac{11}{36}$
(B) $\frac{1}{3}$
(C) $\frac{13}{36}$
(D) $\frac{25}{36}$

Sol. (D)
Total no. of outcomes when dies throw twice
$=6 \times 6$
$=36$
Number of possible outcomes when 5 will come up either time
$=(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(1,5)(2,5)(3,5)(4,5)(6,5)$
= 11
Probability that 5 will come up either time
$=\frac{11}{36}$
$=\frac{25}{36}$
36. The LCM of two numbers is 2400 . Which of the following CANNOT be their HCF?
(A) 300
(B) 400
(C) 500
(D) 600

Sol. (C)

L.C.M of two numbers $=2400$
we know that H.C.F is factor of L.C.M from options 500 is not a factor of 2400
37. In figure, $P A, Q B$ and $R C$ are each perpendicular to $A C$. If $x=8 \mathrm{~cm}$ and $z=6 \mathrm{~cm}$, then y is equal to

(A) $\frac{56}{7} \mathrm{~cm}$
(B) $\frac{7}{56}$
(C) $\frac{25}{7}$
(D) $\frac{24}{7}$

Sol. (D)
we know,

$$
\begin{aligned}
& \frac{1}{y}=\frac{1}{x}+\frac{1}{z} \\
& \frac{1}{y}=\frac{1}{8}+\frac{1}{6} \\
& =\frac{3+4}{24}=\frac{7}{24} \\
& =\frac{1}{y}=\frac{7}{24} \\
& y=\frac{24}{7} \mathrm{~cm}
\end{aligned}
$$

38. In a $\triangle A B C, \angle A=x^{\circ}, \angle B=(3 x-2)^{\circ}, \angle C=y^{\circ}$. Also $\angle C-\angle B=9^{\circ}$. The sum of the greatest and the smallest angles of this triangle is
(A) 107°
(B) 135°
(C) 155°
(D) 145°

Sol. (A)
In $\triangle A B C=\angle A=x^{\circ}$

$$
\begin{align*}
& \angle B=(3 x-2)^{\circ} \\
& \angle C=y^{\circ} \\
& \angle C-\angle B=9^{\circ} \\
& y-(3 x-2)=9 \\
& y-3 x+2=9 \\
& y-3 x=7 \tag{1}
\end{align*}
$$

Also

By angle sum property

$$
\begin{array}{r}
x+(3 x-2)+y=180^{\circ} \\
4 x-2+y=180^{\circ} \\
4 x+y=182 \tag{2}
\end{array}
$$

(2) - (1)

$$
\begin{array}{cl}
7 x=175^{\circ} & y-3 \times 25=7 \\
x=25 & y-75=7 \\
& y=82
\end{array}
$$

$\angle A=x=25$
$\angle B=3 x-2=3 \times 25-2=73$
$\angle C=y^{\circ}=82$
Required sum $=82+25$

$$
=107
$$

39. If $\sec \theta+\tan \theta=p$, then $\tan \theta$ is
(A) $\frac{p^{2}+1}{2 p}$
(B) $\frac{p^{2}-1}{2 p}$
(C) $\frac{p^{2}-1}{p^{2}+1}$
(D) $\frac{\mathrm{p}^{2}+1}{\mathrm{p}^{2}-1}$

Sol. (B)
if $\sec \theta+\tan \theta=p$

$$
\begin{equation*}
\frac{1}{\mathrm{p}}=\frac{1}{\sec \theta+\tan \theta} \tag{1}
\end{equation*}
$$

so by Rationalization.
$\frac{1}{\mathrm{p}} \Rightarrow \frac{1}{\sec \theta+\tan \theta} \times \frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}$
$=\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}$
we know $\sec ^{2} \theta-\tan ^{2} \theta=1$
$\frac{1}{\mathrm{p}}=\sec \theta-\tan \theta$
$\sec \theta-\tan \theta=1 / p$
$\sec \theta+\tan \theta=p$
subtract (1) from (2)
$(\sec \theta-\tan \theta)-(\sec \theta+\tan \theta)=\frac{1}{\mathrm{p}}-\mathrm{p}$
$\sec \theta-\tan \theta-\sec \alpha-\tan \theta=\frac{1-p^{2}}{p}$
$-2 \tan \theta=\frac{1-\mathrm{p}^{2}}{\mathrm{p}}$
$\tan \theta=\frac{p^{2}-1}{2 p}$
40. The base $B C$ of an equilateral $\triangle A B C$ lies on the y-axis. The co-ordinates of C are $(0,-3)$. If the origin is the mid-point of the base $B C$, what are the co-ordinates of A and B ?
(A) $A(\sqrt{3}, 0), B(0,3)$
(B) $A(\pm 3 \sqrt{3}, 0), B(3,0)$
(C) $\mathrm{A}(\pm 3 \sqrt{3}, 0), \mathrm{B}(0,3)$
(D) $A(-\sqrt{3}, 0), B(3,0)$

Sol. (C)
Area of $\triangle A B C$ is
$\frac{\sqrt{3}}{4} \times a^{2}$
a is side of Δ.
$\frac{\sqrt{3}}{4} \times 6^{2}$
and we know area of $\Delta=\frac{1}{2} \times b \times h$
$\frac{\sqrt{3}}{4} \times 6^{2}=\frac{1}{2} \times b \times h$

$\frac{\sqrt{3}}{4} \times 36=\frac{1}{2} \times 6 \times h$
$h=3 \sqrt{3}$
So, coordinates of $A(\pm 3 \sqrt{3}, 0) \quad B(0,3)$

SECTION C

Q.No. 41-45 are based on Case Study-I you have to answer any (4) four questions.
Q.No. 46-50 are based on Case Study-II, you have to answer any (4) four questions.

Case Study - I

A book store shopkeeper gives books on rent for reading. He has variety of books in his store related to fiction, stories and quizzes etc. He takes a fixed charge for the first two days and an additional charge for subsequent day. Amruta paid Rs. 22 for a book and kept for 6 days; while Radhika paid Rs. 16 for keeping the book for 4 days.

Assume that the fixed charge be Rs. x and additional charge (per day) be Rs. y. Based on the above information, answer any four of the following questions:
41. The situation of amount paid by Radhika, is algebraically represented by
(A) $x-4 y=16$
(B) $x+4 y=16$
(C) $x-2 y=16$
(D) $x+2 y=16$

Sol. (D)
Let assume fixed charge be $=x$
and additional charge be $=y$
$x+4 y=22$
$x+2 y=16$
Subtract (2) from (1)
$2 y=6$
$Y=3$
Put y in (1)
$x+12=22$
$x=10$
42. The situation of amount paid by Amruta, is algebraically represented by
(A) $x-2 y=11$
(B) $x-2 y=22$
(C) $x+4 y=22$
(D) $x-4 y=11$

Sol. (C)
$x+4 y=22$
43. What are the fixed charges for a book?
(A) Rs. 9
(B) Rs. 10
(C) Rs. 13
(D) Rs. 15

Sol. (B)
10
44. What are the additional charges for each subsequent day for a book?
(A) Rs. 6
(B) Rs. 5
(C) Rs. 4
(D) Rs. 3

Sol. (D)
45. What is the total amount paid by both, if both of them have kept the book 2 more days.
(A) Rs. 35
(B) Rs. 52
(C) Rs. 50
(D) Rs. 58

Sol (C)
$(x+6 y)+(x+4 y)$
$(10+6 \times 3)+(10+4 \times 3)$
$(10+18)+(10+12)$
$=28+22$
$=50$

Case Study - II

A farmer has a field in the shape of trapezium, whose map with scale $1 \mathrm{~cm}=20 \mathrm{~m}$. is given below:
The field is divided into four parts by joining the opposite vertices.

Based on the above information, answer any four of the following questions:
46. The two triangular regions $A O B$ and $C O D$ are
(A) Similar by AA criterion
(B) Similar by SAS criterion
(C) Similar by RHS criterion
(D) Not similar

Sol. (A)
$A O B$ and COD

\Rightarrow Similar by AA criteria because
$\angle \mathrm{AOB}=\angle \mathrm{DOC} \quad[\mathrm{V} . \mathrm{O} . \mathrm{A}$.
$\angle \mathrm{BAO}=\angle \mathrm{OCD} \quad$ [Corresponding angle]
So, by $\mathrm{AA} \triangle \mathrm{ABO} \sim \Delta \mathrm{COD}$
47. The ratio of the area of the $\triangle A O B$ to the area of $\triangle C O D$, is
(A) $4: 1$
(B) $1: 4$
(C) $1: 2$
(D) $2: 1$

Sol. (B)

By theorem
(Ratio of Side of $\Delta \mathrm{S})^{2}=$ Ratio of Area of $\Delta \mathrm{s}$
$\left(\frac{A B}{C D}\right)^{2}=$ Ratio of Area of Δs
$\left(\frac{5}{10}\right)^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
$\frac{1}{4}=\frac{\text { Area of } \Delta \cdot A O B}{\text { Area of } \Delta C O D}$
48. If the ratio of the perimeter of $\triangle A O B$ to the perimeter of $\triangle C O D$ would have been $1: 4$, then
(A) $A B=2 C D$
(B) $A B=4 C D$
(C) $C D=2 A B$
(D) $C D=4 A B$

Sol. (D)
\triangle AOB and \triangle COD
Ratio is $1: 4$ then
$2 A B=C D$
49. If in $\triangle S A O D$ and $B O C \frac{A O}{B C}=\frac{A D}{B O}=\frac{O D}{O C}$, then
(A) $\triangle A O D \sim \triangle B O C$
(B) $\triangle \mathrm{AOD} \sim \triangle \mathrm{BCO}$
(C) $\triangle \mathrm{ADO} \sim \triangle \mathrm{BCO}$
(D) $\triangle O D A \sim \triangle O B C$

Sol. (D)
Given, $\frac{A O}{B C}=\frac{A D}{B O}=\frac{O D}{O C}$
In $\triangle A O D$ and

$\frac{A O}{B C}, \frac{A D}{B O}, \frac{O D}{O C}$
(b) $\triangle \mathrm{AOD} \sim \triangle \mathrm{BOC}$
50. If the ratio of areas of two similar triangles $A O B$ and $C O D$ is $1: 4$, then which of the following statements is true?
(A) The ratio of their perimeters is $3: 4$
(B) The corresponding altitudes have a ratio 1: 2.
(C) The medians have a ratio 1:4.
(D) The angles bisectors have a ratio 1:16.

Sol. (B)
We know that ratio of angle bisector, median, altitude is
$\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}=\frac{\left(\text { Altitude }_{1}\right)^{2}}{\left(\text { Altitude }_{2}\right)^{2}}$
$\frac{1}{4}=\left(\frac{\text { Altitude }_{1}}{\text { Altitude }_{2}}\right)^{2}$
$\frac{\text { Altitude }_{1}}{\text { Altitude }_{2}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$

अब मोशन ही है सर्वोत्तम विकल्प !

Directors of Sarvottam Career Institute
Now associated with Motion Kota Classroom

Academic Pillars of NEET Моtion Коta

Amit Verma (AV Sir) Joint Director Exp. : 16 yrs

Shantanu Gupta (SG Sir) Sr. Faculty
Exp. : 11 yrs

Harmeet S. Bindra (Harmeet Sir) Sr. Faculty Exp. : 25 yrs

Renu Singh (RNS Ma'am) Sr. Faculty Exp. : 18 yrs

Kranti Deep Jain (KD Sir) Sr. Faculty
Exp. : 21 yrs

Bharat Bhushan (Bharat Sir) Sr. Faculty Exp. : 11 yrs

Pranay Lahoty (PL Sir) Sr. Faculty Exp. : 8 yrs

Harshit Thakuria (HT Sir) Sr. Faculty

Dr. Deepak Garg (Deepak Sir) Sr. Faculty
Exp. : 6 yrs

S. K. Yadav (SKY Sir) Exp. : 9 yrs

Zeeshan Hussain (ZH Sir) Sr. Faculty Exp. : 8 yrs

Pawan Vijay (PV Sir) Exp. : 5 yrs

Sarthak Maurya (SM Sir)
Sr. Faculty
Exp. : 6 yrs

Deepak Bulani (DB Sir) Faculty
Exp. : 7 yrs

Directors of Nucleus Education \& Wizard of Mathematics

Now Offline associated with Motion Kota Classroom

> Academic Pillars of JEE Motion Кота

Aatish Agarwal (AA Sir) Sr. Faculty
Exp.

Vipin Sharma (VS Sir) Sr. Faculty
Exp. : 12 yrs

Jayant Chittora (JC Sir) Exp. : 16 yrs

Sanjeev Kumar (Sanjeev Sir)
Sr. Faculty Exp. : 8 yrs

Anurag Garg (AG Sir) Sr. Faculty
Exp. 17 yrs

Pramod Pottar (Pramod Sir) Sr. Faculty

Arjun Gupta ${ }^{\text {Arjun Gupta }}$ (Arjun Sir)
Sr. Faculty Exp. : 14 yrs

Durgesh Pandey (Pandey Sir) Sr. Faculty Exp. : 8 yrs

Olympiads है ड़रुरी,
मोशन करवाएगा घर हैढे तैयारी पूरी

NTSE / IJSO \& Olympiads Program

For Class 10th Students

Imprinting the best on
your CBSE term $1 \& 2$ results!
Board Booster Online Program
For Class 10th Students

Saarthi

 Class 11th se apke selection tak ka saccha saathi.. English \& Hindi MediumDrona

Residential Coaching Program

Discipline- Bridge between
 Dreams \& Success

Motion

